Modulation of molecular targets to enhance radiation.
نویسندگان
چکیده
The potential for modern molecular radiobiology to provide meaningful contributions to cancer therapeutics has never been brighter. The classic radiobiology framework assembled over the last three to four decades has not only provided critical insights regarding cell cycle kinetics, DNA damage/repair systems, and the biological basis for fractionation but now affords the opportunity to exploit new molecular targets which may prove particularly valuable in cancer therapy when manipulated in concert with the delivery of ionizing radiation (1–3). To highlight one arena in which modern molecular biology appears to hold particular promise for cancer therapeutics, consider the recent logarithmic expansion in our appreciation and understanding regarding the importance of cellular growth factors and signal transduction systems. There is perhaps no more fertile area of translational cancer research at present than that reflected by the collaborative and sometimes competitive efforts of academia and industry to identify, develop, test, and market new growth factor and signal transduction inhibitors for cancer therapy. Inhibitors for virtually every twoto four-letter growth factor or signal transduction acronym are currently under investigation including CDK (cyclin-dependent kinase), PKC (protein kinase C), EGF (epidermal growth factor), MAPK (mitogen-activated protein kinase), FT (farnesyl transferase), MEK (mitogenactivated protein kinase kinase), and VEGF (vascular endothelial growth factor) to name only a very popular few! How valuable these signal transduction inhibitors ultimately prove to be in cancer therapy may depend not only on the traditional characteristics of agent design and delivery but also on the manner in which they are combined with other cytotoxic or cytostatic agents. A theoretical rationale regarding the value of combining radiation with specific growth factor or signal transduction inhibitors is easy to portray. Many of the inhibitors are primarily cytostatic (antiproliferative) without the capacity to effectively eradicate malignant cells on their own. Seldom have single agents delivered alone proven as fully effective in human cancer therapy as carefully crafted combinations of agents with complementary activities and mechanisms of action. Notable recent advances in our capacity to deliver high precision, three-dimensional/conformal radiation underscore an anticipation that combining molecular-based systemic therapies with radiation will selectively enhance toxicity, primarily within the confines of the tumor itself, precisely where oncologists have always wished to deposit toxicity in the first place. One particular growth factor receptor family and signal transduction system that has received considerable recent attention in oncology therapeutics involves the ErbB receptor tyrosine kinase family (4, 5). The story of Herceptin, which targets the ErbB-2 receptor (HER-2/neu), in the treatment of women with breast cancer is a testament for bench-to-bedside translational molecular cancer research (6, 7). Recent preclinical data further suggest that combining radiation with monoclonal antibody blockade of the HER-2/neu receptor can enhance radiation response and inhibit DNA repair in breast cancer cells (8). A remarkably similar picture is now emerging regarding the ErbB-1 receptor (EGFR), in which development of the monoclonal antibody C225 shows promise across a spectrum of epithelial tumors, particularly for those that overexpress EGFR such as squamous cell carcinoma of the head and neck. Blockade of the EGFR with C225 enhances the in vitro radiosensitivity of human squamous cell carcinomas (9), and phase III clinical trials are now examining the capacity of C225 to enhance tumor control rates in patients with advanced head and neck cancers treated with radiation or with cisplatin chemotherapy. The article by Milas et al. (10) in this issue of Clinical Cancer Research provides additional promising preclinical data regarding the in vivo activity of EGFR blockade with C225 in conjunction with ionizing radiation. A greater than 3-fold enhancement in tumor response after single-fraction radiation exposure is demonstrated in athymic mice bearing squamous cell carcinoma xenografts when they receive systemic C225. The potency of the in vivo antitumor effect observed (more potent than that observed in cell culture) using the combination of C225 and radiation suggests that mechanisms beyond simple proliferative growth inhibition are operational in the in vivo setting. Several distinct lines of inquiry are currently under investigation in an attempt to better understand specific cellular mechanisms of action that may contribute to the antitumor potency of EGFR blockade plus radiation within in vivo model systems (Table 1 and Fig. 1). Recent data from several laboratories suggest that EGFR blockade with C225 may serve to inhibit tumor angiogenesis (10–13), and this result appears to be augmented when effected in combination with radiation (10, 13). In addition to the established data demonstrating an antiproliferative effect of EGFR blockade with C225, with resultant G1 cell cycle arrest (14, 15) data are now emerging regarding the capacity of C225 to modulate apoptosis, inhibit cellular repair of Received 11/15/99; accepted 11/15/99. 1 P.M.H. is the recipient of a laboratory research award from ImClone Systems Inc. and holds stock options in the company. 2 To whom requests for reprints should be addressed, at Department of Human Oncology, University of Wisconsin Comprehensive Cancer Center, 600 Highland Avenue, Madison, WI 53792-0600. Phone: (608) 263-8500; Fax: (608) 263-9167; E-mail: [email protected]. wisc.edu. 3 The abbreviation used is: EGFR, epidermal growth factor receptor. 323 Vol. 6, 323–325, February, 2000 Clinical Cancer Research
منابع مشابه
Combined Effects of 528 Hz Sound and X-ray in Peripheral Blood Lymphocytes
Introduction: Radiotherapy is still one of the main options for cancer treatment but it is in association with damage to normal cells as well as the tumor cells. To reduce the injury in normal cells we have evaluated the effect of 528 hertz sound after X irradiation in peripheral blood lymphocytes. Materials and Methods: in this study, peripheral blood was o...
متن کاملDendritic Cells in Transplant Tolerance
Dendritic cells (DCs) are a heterogeneous family of professional APCs involved in priming adaptive immune responses. Donor DCs (direct pathway of allorecognition) and recipient DCs presenting processed donor major histocompatibility complex (MHC) as peptides (indirect pathway of allorecognition) participate actively in graft rejection by stimulating recipient T cell responses following organ tr...
متن کاملRespiratory motion effect on tumor and normal tissue doses in patients with lung cancer, treated with Intensity Modulation Radiation Therapy and Three Dimensional Conformal Radiation Therapy.
Introduction: The aim of this study is to investigate the effect of respiratory motion during radiation therapy in patient with lung cancer and comparison of dosimetric parameters between Intensity modulation radiation therapy and three-dimensional conformal radiotherapy in lung cancer. Materials and Methods: Two CT scan was performred for each pati...
متن کاملModulation of Some Insulin Signaling Genes Due to Prenatal Rice Consumption
Objective: A clinically observable metabolic disorder often takes its root from modulation of transcriptional factors which in turn are responsible for perturbed protein expressions and their sequelae. Perinatal perturbations due to chronic prenatal exposure to a certain type of rice could predispose parents exposed to such ‘insult’ and their subsequent offsprings to metabolic diseases. Materi...
متن کاملMolecular targets of pomegranate (Punica granatum) in preventing cancer metastasis
Metastasis is the primary cause of mortality and morbidity among cancer patients and accounts for about 90% of cancer deaths. The most common types of treatment for cancer metastasis are chemotherapy and radiotherapy. However, such therapy has many serious side effects that could diminish the quality of life in patients. There is increased appreciation by the scientific community that natural c...
متن کاملInvestigation of Freedom-Degrees impact on Modulation of Radiation
Introduction: Nowadays tendency to apply more degrees of freedom in high-tech radiotherapy systems, and consequent complex process to optimize dose calculation and delivery algorithms, is a challenge of radiation therapy optimization. Faster MLC speed, dose rate, Gantry angle variation, and other degrees, which have been utilized in IMRT, IMAT, VMAT, improved modulation of inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 6 2 شماره
صفحات -
تاریخ انتشار 2000